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Ahti-act. The sp1o.gl3u phase and the firstader >pin-glass transitions are invcstigaled for 
a seneralized SherritiSton-Kirhpatrlrk lsinp spin-glass model uith 5 = I In  a crystal field 
Mean fieldequationsfor th?  modcl aredcrtvedandthe) aresolvcd numencall). Theoouble 
peak structure in the dimbition oip  = (91 i s s h w n  to be importm near the first order 
transition,. Th? transitions 31e qualttatiiel) similar to the q o m d  slate tran,rtion 

1. Introduction 

The mean field theory of the Sherrington-Kirkpatrick (SK) spin-glass model is now 
rather well understood [I]. The concept of replica symmetry breaking appeared and its 
physical meaning has been clarified. There are many pure states in the spin-glass phase. 
The spin-glass transitions in this model are continuous. 

Ghatak and Sherrington generalized the SK model to the case with integer-valued 
spinsS,=O, 21, +2,. . ., +SandwithacrystalfieldtermD(S,)ZintheHamiltonian[2]. 
They found both first order and continuous transitions within the replica symmetric 
approximation. The stability of the replica symmetricsolutions has been analysed [3,4], 
and the nature of the instability of the replica symmetric solutions along the first-order 
spin-glass transitionlines remains to beclarified. Some eigenvaluesofthe Hessian matrix 
become complex and the free energy suffers discontinuity on the first-order transition 
line in the replica analysis. A full Parisi treatment would cure these in- 
adequacies but it has not been performed yet. 

Besides the replica method, there is an approach introduced by Thouless, Anderson 
and Palmer (TAP) which does not rely on the replica technique [5]. Although it  is rather 
difficult to solve the TAP equations numerically, Nemoto and Takayama developed a 
method to find solutions [6]. This method was successfully applied to analyse the nature 
of the spin-glass phase for the SI< model [7]. The SK model in a transverse field, which is 
a quantum spin-glass model, was also investigated by the same approach [SI. 

In  thispaper, weinvestigate thenatureofthespin-glassphaseandthefirst-orderspin- 
glass transitionsfor thegeneralized SK model. The approach of Nemoto andTakayama to 
solve the mean field equations, which correspond to the TAP equations, is employed. A 
consistent description of the first-order transition is obtained. In particular, the free 
energy is continuous at the first-order transition, as it  should be. In the spin-glass phase 
near the first-order transition, the distribution o f p ,  = (S?.) is double peaked. One part 
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of the system, with largerpi, mainlycontributes to the spin-glassorder, thisis similar to 
that for the SK model. Another part of the system with smallerp, is almost paramagnetic. 
In the paramagnetic phase near the first-order transition,pi is small. The nature of the 
first-order transitions is similar to  the ground state first-order transition. It was pointed 
out by Lage andde Almeida that thegroundstate transition will occur at D = Us, where 
U,, is the ground state energy for the usual 21 model [3]. In the spin-glass phase at 
T = 0, allp, equal unity, and allp, become zero in the paramagnetic phase. 

2. Mean field equations 

We consider an infinite-range spin-glass model with a crystal field described by the 
Hamiltonian 

Z = - 2 J; jS iS ,  - 2 OS; (1) 
<iJ> 

where the spin variable S, takes the values 0 and t 1. The exchange coupling I,, has zero 
mean and variance l /Nand the sum Zcji) is over all distinct pairs. 

The free energy and the mean field equations which are exact for the infinite-range 
model may be easily obtained either by a power expansion [9] or the two-spin cluster 
method [lo], for example. The free energy becomes 

F =  I: I-Jp,m1 - ( P J Z , / Z ) ( . P ~  - m W ,  - m : ) ~  - E DP, 
{id i 

+ ( ~ / z P )  C [ (p i  + m,) In(p; + m i )  + ( P ;  - m,)  In(p, - m,) 

+ 2(1 -p i )  In 2(1 - pi) - 2 In 21 (2) 
where mi and pi are thermal averagesof &and S: respectively. From this free energy we 
obtain the following two sets of mean field equations: 

U/ZP) In[(p, + mi)/(pi - mi)] - CJ;p1 + Pmi X J $ ( ~ ~  - I.?) = aF/ami = o (3) 

(4) 
P (1/2P) In[(pf - mf)/4(1 -pi)’] - D - -s J i ( p i  - m f )  = a F / a p ,  = 0. 
2 ,  

, i 

The free energy is not always convergent as in the case of the SK model. We use the 
method of Owen to discuss the convergence condition for the free energy [ll]. Thc free 
energy can be written as 

PF = -In Tr  exp( -PH(O’) - In exp(-P(H - ~ 1 0 1  (5) 

where (. . .)Hie) means the thermal average with respect to the Hamiltonian H(”. We 
chose Po) as 

H‘O) = E Hp’ (6) 

where 

P - ~ ~ $ m ~ ( p ~  - m : ) ] ~ ,  - E - ~ $ ( p ,  - m;)$ - OS: 2 i 
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Then the first term in (5 )  will give the mean field free energy. The second term in ( 5 )  is 
calculated to be 

OF, = -In{n { 1 + [ P J , ~  + 2mimi(~~v)z~(mi - s,)(ml - si) 
(ii) 

+ [(PIij)2/21@i - s3 @ j  - s:, - mi(PJ,j)Z(mi - Si)(Pi - s:) 

- mi(pJ,))*(mj - S j ) ( P i  - Si) l),,m (8) 

where we have expanded the exponential up to the second order in Jii. Expanding the 
product in (8) around unity, we have tree diagrams which become zero with the choice 
of 

m, = (Si)wioi (9) 

p ;  = (S;)fiw. (10) 
and 

It can be shown that (9) and (10) are equivalent to the mean field equations (3 )  and ( 4 ) .  
Among various ring diagrams, we adopt the ansatz that the ring diagrams made of 
[PJ;, + 73~;mi@J,j)~](m, - Si)(mj - Si) are most divergent. Then a series of double 
bond rings can be summed [ l l ]  to give 

1 - N-'(PJ)*  c (p i  - m;)* . ( 1 1 )  
i 1 

Thii leads to the convergence condition 

(PJ)*N-' 2 ( p i  - mZ)* c 1. 
i 

This condition will be used when the first-order transitions are investigated. 
Next we will consider the instability line of the paramagnetic phase (the continuous 

transition line) by using (3) and (4) to compare it with the result obtained by the replica 
method. This line is obtained from the first-order terms of (3) in magnetization and they 
are given by 

1 1  - x - m; - c Jiiml + pmi c J,:Pi.  
B c  Pd I i 

To the zeroth order in mi, (4) becomes 

(14) 
1 B 
B 2 ,  
- In[pi/2( 1 - P i ) ]  - D - - c J;pi = 0. 

To carry out an analytic calculation, we will make an approximation ofpi = p .  Then (14) 
becomes 

( U P )  M P / 2 ( 1  - P)1 - D - cc/2) P = 0. (15) 
Terms in (13) are rewritten using the maximum eigenvalue of the random matrixJij and 
they become zero on the transition line as follows: 

From (15) and (16), we obtain 

which is just the same second order transition line as the one in the replica method [ 4 ] .  

-2 + p ( l / T , )  + ( l / p ) T ,  = 0. 

T,  h(T, /2(1  - T,)) = D + t 

(16) 

(17) 



2618 T Yokora 

It does not seem clear whether (17) is exact because we have used the approximation of 
p ,  = p.  Numerical results obtained by solving (3) and (4) show that p ,  depends on 
position. 

We mention the paramagnetic phase using (15). This equation has three solutionsor 
one solution depending on the region of parameters. The line separating these regions 
is 

(18) D = -(1/4T)(l -C (1 - 8T2)In) + 2Tln{[l -C (1 - 8TZ)'!2]/4T} 

which has also been used in [4]. The first-order transition line locates in the region with 
three solutions. In the following section, these three solutions will be used as initial 
conditions to obtain numerical solutions for (3) and (4) in the paramagnetic phase. 

3. Numerical solutions of the mean field equations 

In order to discuss the nature of the first-order spin-glass transitions and the spin-glass 
phase, we solve the mean field equations (3) and (4) numerically. We adopt the method 
of Nemoto and Takayama [6], in which IVFI is minimized. 

The system size we use is N = 40 and 15 samples of random bond configurations are 
prepared. Here we simply expect that the size of the system is enough to describe the 
system satisfactorily. In fact, the nature of the spin-glass phase has been described rather 
well by using a finite size system for the SK model 171. Because spin-glass transitions for 
T <  1/3 are expected to be first order [2], the numerical study is performed at T = 0.2 
in this paper, The numerical procedure to obtain solutions for the spin-glass phase is as 
follows. Fist, 500 initial configurations for IS,} are tried for each sample at T = D = 0. 
Among many solutions thus obtained, the minimum energy is denoted by Emi, for each 
sample. We let survive only solutions which satisfy the following energy condition: 

< exp[-S.O(E - Emin)] (19) 
because only a small number of solutions are statistically important. Next, the tem- 
perature is raised to 0.2. Solutions are updated by iterations to minimize IVF(.  The 
adopted convergence condition is 

(20) Iml"t l )  - ml"'I < 10-5 

for all sites and n is the number of iterations. Some solutions join each other in this 
process. We calculate the smallest eigenvalue of the Hessian matrix a'F/aXaY where 
Xand Yareselectedfrom{mi.mi,p,,p,}. We accept onlysolutionswith thenon-negative 
smallest eigenvalue. This procedure to seek solutions is repeated to decrease the value 
of D by the step of -0.02. 

We need also paramagnetic solutions to discuss the first-order transitions. These 
solutions are obtained numerically as follows. For given Tand D, uniformp is obtained 
bysolving(l5).Thefirst ordertransitionsseemtooccur in the regionwith threesolutions 
for(l5) [4]. Adoptingthese threesolutionsasinitialvaluesofp,, the mean fieldequations 
(3) and (4) are solved numerically. Then, the obtainedp, depends on position. We find 
the following results. The solution with the largest initial value ofp is situated out of the 
range of the convergence condition of (12). The solution with the middle value of p 
becomeslocally unstable because thesmallest eigenvalueof the Hessian matrix becomes 
negative. Only the solution with the smallest initial value ofp survives. 
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Figure 1. The Edwards-Anderson order parameter 
and an order parameterg, defined in lhe text, at T = 
0.2. The circles and the crosses represent qEA and Q 
respectively. 

Figure 2. The order parameter function q ( x )  for D 
equal to ( 0 )  IXO, (b) -0.3, (c) -0.6 and ( d )  -0.8 at 
T = 0.2. 

We obtain the first-order transition point by comparing the free energy of the 
paramagnetic and the spin-glass phases. We identify the right thermodynamic phase as 
the one with smaller free energy. The transition occurs at 

D -0.85 * 0.05 (21) 
for T = 0.2. There is no discontinuity in the free energy and a consistent description of 
the first-order spin-glass transition is obtained. 

Next we will discuss the order parameters. The Edwards-Anderson order parameter 
and the averaged spin-glass order parameter defined by 

and 

are shown in figure 1. Here the overlap of magnetization between two pure states 

1 
q o b  = ,m. .m,  (24) 

and the statistical weight of a pure state 

are used. At the first order transitions they are discontinuous. The spin-glass order 
parameter function q(n) obtained by 
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- D  Figure 3. The statistical average ofp, at T = 0.2 

is shown in figure 2. The replica symmetry is obviously broken near the first-order 
transition. 

The statistical average of pi defined by 

is shown in figure 3. This is also discontinuous at the first order transition. To discuss the 
nature of the spin-glass phase and transition, the distributions of pi are shown in figure 
4. As D is decreased, a second peak with smaller values forp, grows. About half the sites 
with larger pi contribute mainly to developing the spin-glass order near the transition. 
In the paramagnetic phase near the first order transition, there is no site with largerp, 
and a single peak distribution is observed. 

We mention the replica symmetry inp. If the replica symmetry in p is also broken, 
we would obtain a non-trivial distribution for p .  defined by 

where the index a denotes a pure state. The probability distribution of p .  is defined by 

P(P) = (PI(P))J = (2 P A P  -Po,>.  I (29) 

The order parameter p(x) may be defined by 

In figure 5, p ( x )  obtained numerically by using (30) is shown. It seems that p(x) is non- 
trivial especially when D is small. To make a definite conclusion for the replica symmetry 
breaking in p,  it is necessary to study the size dependence ofp(x). 
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4. Summary and discussion 

In this paper we have studied the nature of the first-order spin-glass transition and the 
spin-glass phase of an infinite-range Ising spin-glass model. 

Mean field free energy and mean field equations have been obtained. The con- 
vergence condition for the free energy has been discussed. We have shown that the 
continuous transition line obtained by the replica method can be reproduced when the 
fluctuation in pi is neglected. Whether this is justified or the locus of the transition line 
should be modified remains to be clarified. 

The first-order spin-glass transition is described consistently in this method. There 
is no discontinuity in the free energy. The order parameters are obtained numerically. 
The spin-glass order parameters are consistent with the concept of the replica symmetry 
breaking. In particular, the replica symmetry is broken on the first-order transition line. 
The distributions of pi show that the nature of the spin-glass transition is similar to the 
ground state spin-glass transition at D = UsG [3]. In this transition, a finite fraction of 
spins contribute mainly to the energy in the spin-glass phase. In the paramagnetic phase, 
all spins have smaller values of pi and the transition is of first order with a discontinuity 
in mi and p,. The nature of the continuous transition is different. In this case, a single 
peak distribution of pi is observed and most pi are large at the transition and only mi 
becomes small because of thermal fluctuations. 

The replica symmetry breaking of q is related to the existence of many pure states. 
Whether all pure states have the same average ofp i  should be clarified to make a definite 
conclusion for the replica symmetry breaking in p. 
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